
1 

Analysis of the Life-Cycle Cost and Capability Tradeoffs Associated with the Procurement and 
Sustainment of Open Systems 

 
Shao-Peng Chen, Dept. of Mechanical Engineering, University of Maryland 
Peter Sandborn, Dept. of Mechanical Engineering, University of Maryland 

William Lucyshyn, Center for Governance of Technology and Systems, School of Public Policy, 
University of Maryland 

 

Abstract:  System openness refers to the extent to which system components (e.g., hardware and software) 
can be independently integrated, removed, or replaced without adversely impacting the existing system. 
Openness is an intuitively understood concept used to describe the architecture and implementation of 
safety- mission-, and infrastructure-critical systems.  However, openness is difficult to quantify in terms of 
its value.  While openness is widely associated with life-cycle cost avoidance, system openness can also 
lead to increased costs in some cases. Previous efforts to establish value have relied on qualitative system 
analyses, with the results often articulated as an intangible “openness score” that fails to provide the 
information necessary to understand the conditions under which there is a life-cycle cost avoidance.  This 
paper develops a model that quantifies the relationship between system openness, life-cycle cost and system 
capability risks.  A case study that evaluates the Acoustic Rapid COTS Insertion (A-RCI) Sonar System is 
provided.  For the version of the A-RCI considered in this paper, an open system architecture was found to 
always be cost-effective when the original A-RCI two-year refresh interval is mandated. However, if the 
refresh interval is unconstrained and the expected consequence of losing capability is small, a closed system 
with no refreshes is less costly than the original A-RCI. 

 
Keywords: Open systems; Life-cycle cost modeling; Capability, Obsolescence management; A-RCI; Open 

Systems Approach (OSA); System of Systems Approach (SOSA); Business case 
 

1 Introduction 

Manufacturers and sustainers of critical systems face many long-term budgetary challenges. Critical 
systems, such as aircraft, rail, industrial controls, power generation, defense and communications 
infrastructure, are expensive to procure and sustain over their long-life cycles (measured in decades). 
Because of their prohibitively high cost of replacement (which is in many cases born by taxpayers), these 
safety-, mission-, and infrastructure-critical systems cannot be replaced as often as they should be. 
Concurrently, technology is evolving, which limits the useful life of many systems, thus requiring frequent 
upgrades to maintain the capability that is required to remain competitive or effective in accomplishing 
their intended purpose. 

Critical systems have traditionally been developed using acquired proprietary systems and interfaces, 
which make it challenging to modernize and reduce opportunities for competition.  Implementing an open-
systems architecture permits the development and acquisition of modular, interoperable systems enabling 
components to be added, modified, or replaced by different vendors throughout the system’s life cycle.  
This creates the potential for increased competition and innovation (Guertin and Womble, 2012).  For 
example, the U.S. Air Force’s program to upgrade the B-2 bomber's communications, networking, and 
defensive management systems will cost over $2 billion, in part because the prime contractor owns all the 
necessary proprietary technical data and software. Because this system is “closed”, competing this effort 
was not a viable economic option, (GAO, 2014).  

A variety of strategies are being explored, or reemphasized, to increase the efficiencies of acquisition 
processes. One way for the critical systems community to minimize the cost and time needed to modify or 



2 

upgrade systems is by using an Open Systems Approach (OSA) for system design and development. When 
used appropriately, OSA can provide a degree of flexibility, enabling the integration of rapidly changing 
technologies. However, as with all approaches, there are costs as well as benefits. This paper explores a 
business case methodology to assess the application-specific cost effectiveness of OSA. 

 

1.1 Open Systems Approach (OSA) 

System openness refers to the extent to which system components (e.g., hardware and software) can be 
independently integrated, removed, or replaced without causing an adverse impact on the existing system. 
The quality, functionality, and efficiency of open-system architectures have led to their wide acceptance by 
business and industry, and they are starting to be used by nations that have advanced defense industries, 
(Mladenović et al., 2013).   

For example, the U.S. Department of Defense (DoD) established a program in 1994 to promote the use 
of open-systems approaches from the top-down. In fact, the acquisition strategy for a given system must 
identify where, why, and how modular open systems will be used, (DoD, 2015). The DoD’s Open Systems 
Approach, now referred to as Modular Open Systems Approach (MOSA),1 promotes the use of modular 
design to encourage companies to improve and manufacture technologies that are interoperable with the 
DoD’s current system.   

The United Kingdom’s Ministry of Defense (MoD) has a similar strategy for the use of open-systems 
architecture referred to as the System of Systems Approach (SOSA) Open Systems Strategy. The SOSA 
Open Systems Strategy describes the open-systems vision and the roadmap for achieving the required level 
of openness across the defense enterprise.  The MoD’s policy provides high-level guidance and states that 
an open-systems approach should be adopted to realize benefits that include: ease of interoperability, ease 
of modification, improved integration, improved opportunities for competition and innovation, and improve 
obsolescence management, (UK MoD, 2013). The UK, along with several other countries (Norway, 
Germany, and Sweden) have also adopted programs to upgrade their submarines’ Combat Management 
Systems using an open systems approach and COTS (Commercial Off the Shelf) components (Peruzzi, 
2019).  Finally, although the Australian Defence Forces do not mandate the use of open system 
architectures, a 2016 Defence White Paper identified the opportunities offered using open-system design 
concepts (Dunn et al., 2018). 

Conventional wisdom supports the notion of open systems but quantifying the actual cost avoidance 
remains elusive. The objective of this paper is to create a model that allows the quantification of the 
relationship between system openness and life-cycle cost on an application-specific basis.  An example of 
this could be the use of radar technology on an aircraft. With an OSA, the radar technology could be 
replaced or upgraded without replacing numerous related subsystems. Closed-systems architecture, on the 
other hand, effectively restricts access to configuration and programming information from outside parties. 
Closed systems often make upgrading a piece of equipment difficult and costly. Further, closed systems 
can lead to “vendor lock” where the customer becomes dependent on a single service provider because the 
costs of changing vendors is prohibitive.   

Historically, critical functionality in complex electronic systems was provided by custom-made 
components and custom proprietary architectures, requiring long development times and high development 
costs. However, recent technological advancements have allowed for the increased generalizability of both 
hardware and software (and system architecture); now components can be designed once, and then used in 
many different applications. These advancements have increased the viability of using OSA in general, and 
a Modular Open Systems Approach (MOSA) in particular (Abbott et al., 2008).  

While the defense community supports implementing OSA whenever possible, there are numerous 
reasons to be cautious since business and engineering-tradeoffs must be made that could change the 
incentive structure and reduce the system effectiveness. First, if there are no standards for a new product, 

 
1 This paper uses OSA to refer to Open Systems Approach in general and MOSA to refer to the US DoD approach 
specifically. 



3 

then a closed-system architecture may be best until standards are created (Firesmith, 2015). Second, if there 
is only one vendor that can provide a subsystem or service (i.e., a “sole source”), then attempting to make 
an open system may have no benefit; for example, the remote vision system on the Boeing KC-46A2 is sole 
sourced to Boeing (SAF Public Affairs, 2020).  This newly developed complex system is critical to the 
aircraft’s primary mission (aerial refueling), it must be fully integrated with the proprietary aircraft systems, 
and has limited/no application to other military systems or commercial use.  As a result, a sole source 
development was the most efficient solution . Finally, the system support duration and the quantity of 
systems supported have to be carefully considered in the open versus closed system design decision (e.g., 
see the A-RCI case study presented in Section 3 of this paper).  

Generally, it is implicitly assumed that the use of OSA decreases the total life-cycle cost of a system. 
Leveraging existing open technology, including COTS components, avoids many costs associated with 
designing custom systems, and reduces the time required for development or refresh of a system (Logan, 
2004). The use of OSA helps mitigate the effects of obsolescence, lengthens the system’s support life, 
allows for the incremental insertion of new technologies (OSJTF, 2004; Boudreau, 2006), and evolving 
functionality. The use of well-defined standards promotes smooth interfacing both within and between 
systems, while the proliferation of common components has the positive impact of fostering competition 
between suppliers. Component design reuse (within and between systems) eliminates redundant 
components, thus reducing logistical costs. 

However, there are costs associated with openness that should be considered. Building a subsystem 
from commercially available components might add unnecessary functionality into the system and increase 
the system complexity, resulting additional efforts for component and system-level qualification (Grant et 
al., 200; Hanratty et al., 2002; Clough, 2003;). Alternatively, it may be necessary to modify COTS 
components to meet performance requirements (Wright et al., 1997; Jensen and Petersen, 1982), thereby 
adding costs. In addition, the enterprise that manages the system likely has no control over the supply chains 
for COTS components, which tend to be more volatile than proprietary ones (Lewis et al., 2000). This may 
make it necessary to refresh open systems designs more frequently (Clark and Clark, 2007; Abts, 2002), 
which leads to an increase in the number of fielded configurations, which complicates logistics, resulting 
in more expense. 

This paper seeks to quantitatively analyze OSA, specifically the relationship between OSA and life-
cycle cost. 

 

1.2 Existing work 

Several previous efforts have addressed the measurement of system openness. The MOSA Program 
Assessment and Rating Tool (PART or MOSA PART) was developed by the U.S. Navy’s Open Systems 
Joint Task Force (OSJTF) (OSJTF, 2004). Based upon MOSA PART, the Naval Open Architecture 
Enterprise Team (OAET) developed the Open Architecture Assessment Model (OAAM) and the Open 
Architecture Assessment Tool (OAAT) (NOAET, 2009). These tools used similar user-based ratings to 
measure a system’s openness. Tool users first answer a series of self-rating questions. Based on the weights 
of each question, the tools then calculate the final ratings for system openness principles. The tools primarily 
ask system-level and “to what extent” questions, e.g., “To what extent do system components and selected 
commercial products conform to standards selected for system interfaces?” The answers to these qualitative 
questions are highly dependent on the users’ subjective points of view towards the system and program. 

In 2011 and 2012, several parties including the U.S. Air Force Research Laboratory’s RYM subgroup 
collaborated to develop a set of metrics to evaluate the openness of an architecture. This effort resulted in 
a new tool called the MOSA Metrics Calculator (MOSA, 2012). Instead of asking subjective system-level 
questions, the MOSA Metrics Calculator uses objective component-level questions. The component 
characteristics that result from the MOSA Metrics Calculator are more quantifiable and can be accumulated. 

 
2 The KC-46A is a widebody, multirole aircraft that can refuel military aircraft inflight, and can also carry passengers, 
cargo, and patients (Boeing, nd).   



4 

In addition to the problem of subjectivity, a common problem that these tools share is that they were 
not designed to assess the cost associated with openness. The main goal of PART, OAAT, and the MOSA 
Metrics Calculator is measuring the level of conformance to the open system principles, while assuming 
that increased openness is always beneficial. Without accounting for cost in detail, assuming that the value 
of benefits outweighs the costs in every case is questionable.  

Another approach to measuring openness comes from PMH Systems and the University of 
Southampton. This work uses a quantifiable metric, the fraction of interfaces that use open standards, and 
a stochastic model to estimate the decrease in cost and development time associated with increasing 
openness (Henderson, 2009).  However, the model also implicitly relies on the assumption that increased 
openness is always beneficial. Additionally, the metric developed cannot resolve different levels of 
openness and most importantly only addresses the design phase, ignoring significant costs and avoidances 
that occur later in the system’s life cycle. 

In the software industry, the concept of COTS has been widely discussed since late 1990s and life-
cycle-cost models of COTS-based systems have been proposed by several researchers. CICC (COTS 
Integration Cost Calculator) and COCOTS (Constructive COTS Cost Model) estimate the costs incurred to 
integrate a COTS software into a larger system (Abts and Boehm, 1997; Abts et al., 2000). These proposed 
models are limited to the impact of COTS software implementations.  

Previous efforts either rely on a highly qualitative analysis of a system to compare system 
implementations to determine openness, or are limited to specific systems and partial system openness, e.g., 
the evaluation of COTS in software systems. These approaches do not provide sufficient information to 
understand the conditions under which life-cycle cost avoidance can be maximized (or whether there even 
is cost avoidance), or to make business case decisions.  The objective of this paper is to quantify the 
relationship between system openness and life-cycle cost. 

Section 2 of this paper describes a stochastic discrete-event simulation model developed to determine 
the difference in life-cycle and implementation cost between two versions of the same system (having 
different levels of openness). Section 2 also introduces a model to quantify the value of capability updates 
to the system.  Section 3 provides a case study using the model.  In Section 4 we discuss the generalization 
of the model. 

 

2 Model development 

In this study, our goal is to compare the life-cycle cost between two different system configurations, 
determining which one is more cost beneficial. This section presents a stochastic discrete-event simulation 
developed to generate a list of system life-cycle events that were then used as the inputs to a cost model. 
The cost model is then used to determine the difference in life-cycle cost between two versions of the same 
system (the versions having different levels of openness).  A demonstration version of this process is 
provided in the Appendix.  

The total life-cycle cost incurred designing, building, operating, and retiring a system is,3 
 
 CTotal = CDevelopment + CProduction + CO&S + CRefresh + CCapability (1) 
 

where CDevelopment are the non-recurring costs of system design, development and qualification; CProduction 
captures the recurring costs to manufacture and field the system; CO&S are the costs of sustainment incurred 
from system deployment to the end-of-support; and CRefresh are the costs of implementing and qualifying 
technology refresh(es) during the system support life.  CCapability are the potential costs associated with the 
technology in the system being out-of-date relative to the state-of-practice. 

A discrete-event simulation was developed as the first step of the life-cycle cost comparison process in 
this paper. In general, discrete-event simulators model a sequence of events along a timeline. A 

 
3 Some preliminary work done formulating a model based on the equation (1) appears in (Schramm, 2013). 



5 

deterministic schedule or probability distributions are used as inputs to the simulator to predict the event 
dates. At each event, various properties of the system can be calculated and accumulated. The timeline is 
simulated (and relevant parameters accumulated) through many possible time histories using Monte Carlo 
sampling, to create a statistical interpretation of the life-cycle costs. 

In the discrete-event simulator developed for this paper, the event dates are determined by sampling 
time-to-failure (TTF) distributions, forecasted component obsolescence date distributions, and a 
predetermined refresh/redesign schedule. The events of interest are maintenance events, production events 
(delivery of new systems), retirement events (retirement of fielded systems), logistics events (management 
of spares, lifetime buys of parts to manage obsolescence) and design redesigns/refreshes.  

Section 2.1 and Section 2.2 discusses the costs in equation (1) and how they were determined by the 
proposed cost model. Section 2.2 illustrated how capability cost is valued by a model. 

   

2.1 Cost model 

Figure 1 shows the structure of the life-cycle cost used in this paper. The life-cycle cost includes five cost 
categories: development/adoption, production, refresh, operation & support (O&S) and capability. These 
cost categories were selected because they are sensitive to the degree of system openness.  For example, 
the cost of fuel is one particular cost that may not be affected by openness, so it is not considered in our 
life-cycle cost structure. Ultimately, we are only interested in the difference in the life-cycle cost between 
cases with varying degrees of openness, therefore, some costs can be omitted (i.e., they subtract out of the 
analysis, see Section 3.2.1).  

 

 
2.1.1 Development/adoption costs (CDevelopment) 
CDevelopment is the cost associated with designing a new system that satisfies a set of requirements, and 
includes the majority of the costs incurred before the final design is selected, including the cost of designing 
the system architecture and customized components, adopting appropriate COTS components and open 
standards, as well as the costs of partial or alternative designs considered, but not implemented. Prototyping 
and design overhead costs are included. CDevelopment also includes the Non-Recurring Engineering (NRE) 
costs, which may consist of the qualification testing used to demonstrate that the standards, components, 
subsystems, and the complete system meet performance, reliability, security, and other requirements. 

In the cost model, the cost of development/adoption is only incurred at the beginning of the timeline 
when the first version of the architecture was developed. It can be divided to three sub-categories 
corresponding to design/adoption and qualification of the three aspects of the system: architecture, 
component and standard. 

The design and qualification cost of the architecture is related to the complexity and the openness of 
the architecture. For example, a more complicated architecture with more components and interactions 

 
Figure 1 Life-cycle cost structure 

 

Life-cycle cost

Production 
cost

Development/ 
Adoption cost

System initial design & 
qualification

Architecture 
design & 

qualification

Component 
design & 

qualification

Standard 
design & 

qualification

System 
production

Component 
procurement 
& installation

Refresh cost

Refresh development/ 
adoption

Refresh 
production

Component 
design & 

qualification

Standard 
design & 

qualification

Component 
procurement 
& installation

O&S cost

Maintenance Bridge buy Inventory 

Capability
cost

Component 
failure 

repairment



6 

within the architecture requires higher cost for design and qualification. In addition, a more open 
architecture means that more open standards are applied at the interfaces in the architecture. Design for 
open standards require more activities such as evaluating if current and future components can conform to 
the standard so that the components can be truly “plug-and-play”. As a result, the process of design for an 
open standard may cost more than a proprietary interface. 

The design and qualification cost of components is the cost to design or select the components for the 
system. This cost depends on the type of components used in the architecture. Typically, using a COTS 
component results in a smaller design cost than creating a proprietary component since the former can be 
acquired directly from the market. Each component also requires qualification testing to assure it meets the 
criteria of performance and reliability. In our model, the total adoption/development cost associated with 
the components is calculated by summing the design/qualification cost of each type of component that is 
used in the architecture.   

The design and qualification cost of standards is the cost to select the open standards. Standards are 
adopted based on maturity, market acceptance, and potential availability for future system upgrades. Similar 
to the component design/qualification cost, our cost model also assumes that the design and qualification 
cost of standards only depends on the type of standards that are chosen in the architecture. 

 
2.1.2 Production costs (CProduction) 
CProduction includes all costs to manufacture and field the system, including component procurement, 
assembly/manufacturing, stress screening of hardware components (if any), and recurring testing costs.  

The production events are generated based on the system’s production schedule. The production 
(recurring) cost of a system instance is defined as the sum of the costs of procurement, assembly, testing of 
all the system components and the installation of the final system in the field. The procurement cost of a 
component depends on the type of component.   

 
2.1.3 Operation and support costs (CO&S) 
CO&S are the costs of sustainment incurred from system deployment to the end-of-support, including the 
costs of: system operation, modifying, maintaining, supplying, training, and inventory supporting. The 
events associated with sustainment include, but are not limited to: system failure repair, periodic 
maintenance, sparing management and obsolescence mitigation.  

Maintenance events occur when a system failure occurs. Maintenance includes the labor to perform 
maintenance and the cost of spare components (if relevant). The model assumes that the downtime 
associated with a failure is negligible (availability impacts are not included, i.e., we assume that they are 
the same for the cases compared and therefore subtract out – see Section 3.2.1). The model also assumes 
that replacement components (spares) are good-as-new. If the component is still available in the market, it 
will be procured as needed.  

When the obsolescence of a component occurs, a bridge or lifetime buy is made to procure a sufficient 
number of components to support the system until the next system refresh or the end of system support, 
whichever happens the soonest – these components must cover future production and maintenance needs. 
The cost incurred at the obsolescence event is the procurement cost of the bridge buy of components. 

Since bridge or lifetime buy components are purchased in advance and stored in inventory, each 
component incurs an additional inventory cost that depends on the duration of its storage. Inventory 
(holding) costs are charged when the parts are taken from the inventory and used for maintenance.  The 
shelf life of all components is assumed to be long enough that parts bought in a lifetime buy can be used 
for the rest of the system support life. 

 
2.1.4 Refresh costs (CRefresh) 
Through the entire life-cycle, system design refresh may be desirable (or necessary) to assure that the 
system remains supportable or to maintain the technological capability of the system (see Section 2.2). 
System refresh replaces the obsolete or technologically out-of-date components with procurable and 



7 

possibly more technologically advance components. Refresh costs include the cost to develop or adopt the 
components, the cost to deliver the refresh to the individual system, and the cost to re-qualify the system as 
needed. 

In the cost model, refresh costs consist of two cost sub-categories: refresh development/adoption and 
refresh production.  

A predetermined schedule of refresh development events is provided as an input to the model. The 
development of a design refresh results in a new baseline architecture, with a new version of components 
or standards in the architecture. The system follows the current architecture baseline for production and 
refresh delivery until the next refresh development occurs. 

At a refresh development event, every component and standard in the architecture is examined. If a 
component is obsolete or is required to be upgraded, it will be refreshed. A refresh-required component 
might affect other components or standards to be refreshed due to functional dependencies in the 
architecture. 

In our model, a refreshed component is replaced with another component with the same function, same 
procurement life, and good-as-new reliability. If the refreshed component interfaces with its surrounding 
components with open standards, a “plug-and-play” refresh may be achieved, i.e., we could switch the 
component without affecting the surrounding components and standards and replace it with a new 
component that conforms to the open standard. On the other hand, if the connection between components 
is a proprietary link or the open standard is obsolete, the new component may require that the connected 
components also have to be refreshed. 

The structure of refresh development/adoption cost is similar to CDevelopment described in Section 2.1.1 
except that the design and qualification cost of the architecture is excluded from the refresh cost.  Since the 
architecture itself does not change throughout the life-cycle, there is no cost associate with the architecture 
design. Therefore, the refresh development/adoption cost is the sum of the design and qualification cost of 
the components and the standards that are required to be refreshed. 

For refresh production, every fielded system adopts the same refresh production interval after its initial 
production. Therefore, the actual delivery date of the refresh to each system might be different. For example, 
for a 4-year refresh schedule, a system fielded in year 0 would receive its refresh in years 4, 8, 12, etc. 
Another system fielded in year 3 would receive its refresh in years 7, 11, 15, etc. The version of components 
received for refreshes depends on the refresh development baseline available in the year of the refresh for 
the particular fielded instance of the system. 

The refresh production cost has the same structure as production cost, including the cost of purchasing 
and assembly of the components to the system. The refresh production cost in each system refresh 
production is the total procurement cost and installation of the components that required to be delivered to 
the legacy system. 

 

2.2 Cost of system technological capability (CCapability) 

Technological superiority is a priority for some critical systems, especially defense systems. With more 
advanced technological capability, systems are more competitive and the possible threat from adversaries 
may be reduced. To maintain technological superiority, constant system upgrades may be required. In 
systems where technological superiority is a priority, the system’s upgrade frequency may be fixed and the 
life-cycle cost is optimized based on this constraint. In other systems, technological capability may be less 
important and its value can be traded off against other cost factors. This study considers both cases in the 
case study presented in Section 3: 1) the capability benefit of implementing technology refresh is quantified, 
as one of the cost factors, i.e., the cost of system technological capability (CCapability); and 2) open versus 
closed implementations of a system with a fixed refresh schedule.   

In general, capability is defined as “the ability to achieve a desired effect under specified standards and 
conditions through combinations of means and ways to perform a set of tasks” (DoDAF, nd). For the 
purposes of this paper, we will define the system’s technological capability as its ability to accomplish the 
“mission” it was designed for. For example, the absolute capability of a sonar system is its effectiveness in 



8 

detecting objects in the surrounding area, while its relative capability is its effectiveness detecting 
adversaries early enough to take appropriate action.  In the case of a sonar system, the system’s 
technological capability is determined by performance parameters that include: detection range, response 
time, detection accuracy, etc.  

The cost of system technological capability is not just the cost to implement the capability, which is 
already included in the cost model described in Section 2.1, but the costs that result from the capability (or 
lack of capability). More precisely, the cost is a result of the effectiveness of the system in performing the 
tasks required of it. Since the effectiveness is strongly tied to system upgrade and refresh, the cost of system 
technological capability can also be viewed as a metric to quantify the value of a particular refresh plan. 

Studies that are related to the concept of capability cost can be found in the area of refresh plan 
quantification. Figure 2 shows two examples of how a refresh plan can be valued. These studies started by 
assigning an absolute value to system performance or capability. The system value is a function of time and 
can be increased by refreshing the system technology. Engel and Browning (2008) assumed that there is an 
upper limit of system value, called the “value desired by stakeholders”, which is also an increasing function 
over time, see Figure 2. The lifetime value loss is the area between the actual system value and value desired 
by stakeholders. Alternatively, Zellers (2016) assumes that the system’s minimum requirements over time 
is a lower bound, and life-cycle value is the area between the two step curves in Figure 2. Both approaches 
use the area between system value and either the upper bound or lower bound to represent the total life-
cycle loss/value (both models are essentially equivalent). 

 
Figure 2 Quantification of the loss/value of a refresh plan.  

 

 
 
In this paper, instead of using an absolute capability metric, e.g., Figure 2, the concept of relative 

capability is introduced. For a system that is designed to operate in a competitive environment such as 
defense, the cost of system technological capability is related to the system competitiveness among the 
population of adversaries. Therefore, relative capability between competitors is a more appropriate metric 
to reflect the cost of system capability than absolute capability. In Figure 3, the distribution curves represent 
how an adversary’s capability evolves over time (from 𝑡𝑡1 to 𝑡𝑡2), and the vertical line indicates the fixed 
capability of a fielded system that does not receive any refreshes in the same timeframe. The population of 
adversary systems is represented by a distribution indicating the variance of the capability in adversary 
systems. The area under the distribution to the right of the fixed system capability represents the probability 
of the fixed system losing the capability competition to an adversary system. Figure 3 demonstrates that 
even if a system’s absolute capability is fixed (i.e., doesn’t change from 𝑡𝑡1  to 𝑡𝑡2 ), it may be losing its 
capability relative to the environment it is in. Decreases in relative capability represent a cost, which is 



9 

either a decrease in the effectiveness of the system in performing the mission it was designed to perform, 
or an increase in the risk of losing the system4.  

 
Figure 3 The adversary’s absolute capability distribution shifts to the right over time relative to a fixed system 
capability 

 
 
The relative capability of a system instance can be represented by the shaded area in Figure 3, the 

probability that the system capability is less than an adversary’s system capability.  At a given time point, 
the probability of the system losing the capability competition can be written as 𝑝𝑝(Δ𝑡𝑡)  where Δt, the 
technology lag time, represents the technology age difference between the system and the advisory at the 
time point. That is, at a time point when the system is installed with an older technology, i.e., a positive Δt, 
the system would have a larger value of 𝑝𝑝(Δ𝑡𝑡) , and therefore is more likely to lose the capability 
competition to its adversary.  

In the case study presented in Section 3, we assume that the adversary capability follows state-of-
practice technology and therefore the Δt is always positive5. The Δt of a system at a given time point can 
be represented as the age of the current architecture used in the system. To be more specific, Δt is the time 
difference between the current time point and the time of development completion of the architecture 
currently used in the system, i.e., the time point when the architecture is still state-of-practice. For example, 
if there is a system instance where its current architecture was first developed in 2002. The technology lag 
time for this system instance in 2006 is four years. If there is no refresh delivery to the system instance, Δt 
would only increase over time. 

Each delivery of a technology refresh to the fielded system instance resets Δt and the relative capability 
to a higher level (lower probability of losing capability competition). Frequent technology refreshes keep 
the system more up-to-date during its life cycle, reducing the probability of losing the technology 
competition. Note, although we are discussing the cost of relative capability in the context of a defense 
application, the concept is relevant to non-defense systems too.  For example, a system whose 
competitiveness in the marketplace depends on constant technology refreshing – the risk could be loss of 
market share. 

To obtain the quantitative cost, we must construct the relationship between relative capability and cost. 
For a defense system, the cost of system capability may translate into risk, which evaluates the potential 
loss of systems and missions. The life-cycle risk of a system is the sum of system annual risk over its 
operation life. 

Equation (2) provides the general formulation of the risk cost (cost per unit time) of a system instance 
in a given time window associated with relative capability.  

 

 
4 This means that even though the lowest life-cycle cost solution might be to field a system, make lifetime buys of 
parts as they become obsolete and never refresh the system, this may be an impractical solution for some systems 
because the relative capability of the system decreases over time. 
5 This doesn’t mean that all adversary systems are necessarily state-of-practice, but that the capability of the adversary 
population has the same trend as the state-of-practice.  



10 

𝑅𝑅 = 𝐼𝐼𝑝𝑝𝐶𝐶𝑞𝑞 (2) 
 
In equation (2), 𝐼𝐼 represents the expected number of events (encountering an adversary system) in a time 
window, e.g., 2 times per year. The 𝑝𝑝 is defined as the probability that the system capability is less than an 
adversary system capability in this time window. 𝐶𝐶𝑞𝑞 is the expected consequence (measured as a cost per 
event) if a system loses the capability competition to the adversary.  

Based on equation (2), the calculation of the total cost of technological capability is the sum of the 
annual risk cost of each system instance throughout the life cycle, 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  ��𝐼𝐼𝑝𝑝�Δ𝑡𝑡𝐶𝐶,𝑗𝑗�𝐶𝐶𝑞𝑞

𝑇𝑇

𝑗𝑗=1

𝑁𝑁

𝐶𝐶=1

(3) 

 
where N is the number of systems, i.e., fleet size, and T is the total number of support years for the fleet of 
systems. In equation (3), I and Cq are both assumed to be deterministic values (they could be represented 
by probability distributions if the appropriate information was available). 

For p(Δti,j), the relationship between Δt and the probability p was first subjectively determined. The Δti,j 
of ith system instance (note, system instances are distinguished because not all of the system instances 
receive the results of a technology refresh at the same time) in jth year can be evaluated based on the 
production/refresh schedule and the adversary technology evolution assessment process. The corresponding 
p can be determined using the Δt in the subjective function p(Δt). The product 𝐼𝐼 𝑝𝑝�Δ𝑡𝑡𝐶𝐶,𝑗𝑗�𝐶𝐶𝑞𝑞 models the 
expected annual cost of the system instance i in year j, given the discrete technology lag time Δt.  

3 A-RCI case study 

In this section we present a case study of the Acoustic Rapid COTS Insertion (A-RCI) Sonar System. 
The A-RCI program, implemented a COTS-based open architecture for a submarine sonar signal processing 
system. The A-RCI eliminated traditional system architecture that used specialized proprietary components 
that were built to military specification.  Embracing the use of COTS and commercial standards, allowed 
for the sonar signal processing system to be upgraded, without altering other sonar system components, 
(Guertin and Miller, 1998). In addition, the A-RCI case is also regarded as a successful example of open-
systems architecture. One study cites preliminary results compiled from 10 years of data on both the 
Acoustic Rapid COTS Insertion program and its predecessor indicating a life-cycle cost improvement of 
nearly 5:1 (Boudreau, 2006). 

The transformation from a closed system to a COTS-based open system was completed in a four-phase 
implementation strategy (Guertin and Miller, 1998). In Phase I and Phase II, A-RCI developed a Multi-
Purpose Processor (MPP) to process the data from both a towed array (TA) and a hull array (HA). Phase 
III added Spherical Array MPP and Switch MPP to replace the legacy system spherical array processing 
functions. Phase IV integrated another high-frequency sail array MPP into A-RCI. By the end of Phase IV, 
a COTS-based open-architecture A-RCI system completely replaced the original legacy system. 

In order to exercise the model described in Section 2, we examined the life-cycle cost difference 
between two different A-RCI configurations with different degrees of openness.  

We wish to clarify that the data describing the A-RCI in this section represents our interpretation of the 
A-RCI and the A-RCI program, and may not be representative of the actual system or program.  The A-
RCI is a defense system that spans many years, and as such, a complete data set describing the A-RCI is 
not publically available. 

3.1 A-RCI input data 

In this section, the data describing the A-RCI case is provided. Table 1 lists the input parameters used in 
the simulation for the A-RCI. Some inputs had to be assumed since there was no A-RCI specific information 



11 

available, e.g., component procurement life. Some inputs were determined through calibration of the model 
against known A-RCI life-cycle costs, see Section 3.1.1. 

 

 
The architectural input data was based on Guertin and Miller (1998). Figure 4 shows the A-RCI 

architecture assumed in this analysis. A-RCI consists of four primary cabinets. Inside each cabinet there 
are one or more VME drawers containing an array of cards. The software connections between the cabinets 
are indicated as middleware. Open standards are also represented by the linkages shown in Figure 4. The 

Table 1 Input parameters for modeling the A-RCI 
Input parameters Input value Source 
Architecture Figure 4 Guertin and Miller (1998) 
Production schedule Figure 6 Schuster (2007) 
Retirement schedule Figure 6 Schuster (2007) 
Architecture 
R&D cost 

Phase I $48,350,000 From calibration, see 
Section 3.1.1 Phase II $39,015,000 

Phase III $55,745,000 
Phase IV $56,825,000 

Hardware:  
COTS cards 

R&D cost per card type $2,083,333 From calibration, see 
Section 3.1.1 procurement cost per card $7,331 

installation cost per card $733 
reliability Weibull (1.75,12) 
procurement life 3 years Assumed value 

Hardware:  
proprietary 
cards  

R&D cost per card type $3,125,000 From calibration, see 
Section 3.1.1 procurement cost per card $14,545 

installation cost per card $1,454 
reliability Weibull (1.75,12) 
procurement life 6 years Assumed value 

Hardware: 
infrastructure 

R&D cost per infrastructure type $1,000,000 From calibration, see 
Section 3.1.1 procurement cost per infrastructure $400,000 

installation cost per infrastructure $40,000 
reliability Weibull (1.75,30) 
procurement life 20 years Assumed value 

Software R&D cost $12,500,000 From calibration, see 
Section 3.1.1 procurement cost $90,909 

installation cost $9,090 
reliability Weibull (1.75,12) 
procurement life 3 years Assumed value 

Standards R&D cost per standard type $2,000,000 From calibration, see 
Section 3.1.1 

procurement life 10 years Assumed value 
Maintenance action cost/failure $38,389 From calibration, see 

Section 3.1.1 
Bridge buy buffer % of demand 50% Assumed value 
Holding cost/component/year $1,000 Assumed value 
WACC 5%/year Assumed value 

 
 

 
 
  



12 

actual number of components (cards) is larger than those shown in Figure 4. The components that are 
common to all system architectures, i.e., they would be the same whether an open or closed system are 
omitted.  There is no need to model the common components since their impact on the life-cycle cost will 
subtract out of the relative cost model (see Section 3.2.1). 

 

 
Due to the complexity of the A-RCI architectures, we adopted a design structure matrix (Eppinger and 

Browning, 2016) approach to model the A-RCI. The design structure matrix captures how the system’s 
components interact with each other. Capturing the component interactions is necessary to cost the design 
refreshes, i.e., when a particular component is changed at a refresh, other required component changes are 
captured by the design matrix; similarly, the interactions captured in the design matrix guide re-qualification 
requirements for the system at refreshes. 

Because of space constraints, Figure 5 only shows the portion of the design structure matrix of the A-
RCI Phase III architecture that represents the architecture of TA/HA MPP. For an element 𝑎𝑎𝐶𝐶𝑗𝑗 in the 𝑖𝑖th row 
and 𝑗𝑗th column, the value of the element indicates how component i interacts with component j. If 𝑎𝑎𝐶𝐶𝑗𝑗 is 
blank, there is no connection between components i and j. Different values of 𝑎𝑎𝐶𝐶𝑗𝑗 represent different types 
of interfaces between components i and j.  The values of 𝑎𝑎𝐶𝐶𝑗𝑗  have no quantitative meaning, they just 
enumerate distinct connections: -1 is the proprietary interface and positive integers represent the open 
standards used in A-RCI (1: Middleware; 2:FDDI,ATM; 3:VMEbus, RACEway; 4:FCS,Ethernet). The 
modules shown in Figure 5 are adopting all open standards. 

 

Figure 4 Architecture assumed in the A-RCI case study. 
 

 
 

Sun SPARC processor 
card 

custom array interface 
cards

custom beamforming 
cards x3

Quad i860 cards x4

SPARC general-purpose 
processor cards x2

FDDI network card x1

COTS processing cards 
x8

Quad PowerPC COTS 
cards x9

PowerPC processor card 
x2

FDDI network card x1

COTS processing card x4 PowerPC processor card 
x4

Quad PowerPC COTS 
cards x2

COTS signal processing 
card x8

Software

To
w

ed
 A

rr
ay

/H
ul

l A
rr

ay
 M

ul
ti-

pu
rp

os
e 

Pr
oc

es
so

r (
M

PP
)

Sp
he

ric
al

 A
rr

ay
 M

PP

Sw
itc

h 
M

PP

So
na

r I
nt

er
fa

ce
 U

ni
t

Signal condition 
drawer 

Allocatable processor 
drawers x3

Allocatable processor 
drawers x2

Beamformer Drawer

VME Drawer (data 
processing drawer)

miscellaneous signal 
conditioner drawer

VME drawer x3 

Control Display 
Workstation x4

Cabinet

Drawer

Card

Middleware

FDDI, ATM

VMEbus, RACEway

FCS, Ethernet

Standards:



13 

 
The installation and retirement profile and number of system instances of the A-RCI is shown in Figure 

6, Schuster (2007).  

 
Figure 5 Partial design matrix of the A-RCI Phase III architecture 

 
 

 
 
  



14 

 
3.1.1 Data calibration 
The components and the standards that were used in the A-RCI were described in detail by Guertin and 
Miller (1998), however, the development and production cost, reliability and procurement life are not 
provided. To determine these values, we reverse-engineered the reported A-RCI life-cycle cost data. 

The reported A-RCI life-cycle cost data was obtained from a 2006 presentation from ASSETT 
Corporation (ASSETT, 2006) that summarized top-down and bottom-up cost estimations for the A-RCI 
system from 1996 through 2006. The ASSETT presentation provided the A-RCI annual cost data based on 
annual budget and contract data, which were mapped into three categories: Development cost, Production 
cost and O&S cost. 

A simplified surrogate life-cycle cost model of intermediate variables was built for calibration. The 
intermediate variables included quantities such as average development cost of the architecture and average 
production cost per system. After the intermediate variables were calibrated to the known life-cycle cost 
totals, they were combined with other known information such as the number of components and 
architectures, to estimate the simulation model data. For example, we first estimated the refresh 
development cost per year intermediate variable, based on the total development cost from ASSET and the 
refresh schedule used for the A-RCI.  The average refresh cost per component was the refresh development 
cost per year divided by the number of refreshed components in each. 

The details of calibration process can be found in (Chen, 2022). The results of the calibration process 
are included in Table 1. 

3.2 Modeling results 
In this study, two system configurations were compared based on their life-cycle cost: 

“Original A-RCI” = the actual A-RCI architecture, more open. 
“Closed Version” =  a less-open version of A-RCI where two of the modules (Spherical Array MPP and 

Switch MPP in Figure 4) adopted closed standards and proprietary components 
were used instead of COTS parts.  

 
Figure 6 Installation profile for the A-RCI (Schuster, 2007) 

 
 

 
  

N
um

be
r o

f 
Hu

lls



15 

 
Both configurations followed the same production/retirement schedule (Figure 6) and used the same input 
data described in Table 1. 

In sections that follow, the concept of a relative life-cycle cost is introduced using an example 
simulation result. Selected sensitivity analysis was performed to evaluated how three main key parameters, 
risk profile, end-of-support year and fleet size, affect the simulation result. 

 
3.2.1 Relative life-cycle cost analysis approach 
It is often not practical to calculate the absolute value of all the life-cycle costs for a system.  To assess the 
cost of openness we are actually only interested in the difference in the costs discussed in Sections 2.1 
through 2.3 between the two system implementations.  This approach is referred to as a relative cost model 
(Sandborn, 2017).  The advantage of a relative cost model is that all the costs that are a “wash” between the 
two architectures (i.e., the same) don’t have to be modeled because they subtract out.  The cost difference 
between two cases is significantly easier to determine than the absolute cost of the cases. The model 
described in this paper never produces absolute costs, only cost differences between two cases. 

 

 
Figure 7 shows the process of obtaining relative cost, including an example result from the simulation 

model. On the left side of Figure 7 are the absolute accumulated costs for the entire fleet of two scenarios 
calculated from the discrete-event simulation. In both cases many time-history solutions are used (each is 
the result of a unique combination of samples from the input probability distributions, so each is one 
possible time history for the fleet).  The darker solid line in the right figure is the mean of the time histories.  
The absolute accumulated costs for the two system configurations on the left side of Figure 7 are NOT 
particularly meaningful, because the relevant life-cycle costs that are not affected by system openness are 
omitted. The right side of Figure 7 shows the difference between the two system costs. The vertical axis in 
the right figure is the life-cycle cost difference. Figure 7 shows that at the end of 36 years, the mean value 
of the accumulated cost different is greater than zero, indicating that the original version of the A-RCI will 
have a lower life-cycle cost than the closed version for this example case.  

Figure 7 The relative cost model approach to obtain the accumulated cost difference (expected consequence 
per capability competition loss is Cq = $1 million, end-of-support = 36 years, 6-year refresh interval) Year 0 is 
FY99.  

 

-200

-150

-100

-50

0

50

100

150

0 5 10 15 20 25 30 35

Ac
cu

m
ul

at
ed

 C
os

t D
iff

er
en

ce
(C

lo
se

d 
ve

rs
io

n 
-O

rig
in

al
 v

er
si

on
)

M
ill

io
ns

Year

Original A-RCI is better

Closed version is better

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 10 20 30

Ab
so

lu
te

 A
cc

um
ul

at
ed

 C
os

t
O

rig
in

al
 A

-R
CI

Bi
lli

on
s

Year

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 10 20 30Ab
so

lu
te

 A
cc

um
ul

at
ed

 C
os

t
Cl

os
ed

 A
-R

CI

Bi
lli

on
s

Year

Pr
ob

ab
ili

ty
De

ns
ity

 F
un

ct
io

n



16 

 

 
Figure 8 shows the life-cycle cost difference as a function of end-of-support year.6 The result in Figure 

7 is the 36 year end-of-support data point in Figure 8. In Figure 8, a positive result indicates that given the 
end-of-support life, the original A-RCI configuration is more cost effective, while a negative result value 
indicates that the less-open version of A-RCI is more cost effective. This result can be interpreted as: for 
the assumed risk profile, if the end-of-support year is between 35 to 39, we should choose the less-open 
version of A-RCI rather than the original A-RCI.  The results shown in Figures 7 and 8 represent one specific 
case to demonstrate the methodology.  In the sections that follow we will conduct a more detailed analysis 
comparing the open and closed versions of the A-RCI. 

 
3.2.2 The effect of refresh strategy  
In the previous section, we demonstrated how the simulation can be used to assess the life-cycle cost 
difference between two system configurations. In this section, we examine how the best refresh strategy 
could be determine based on its effect on the life-cycle cost. 

Refresh strategy affects both refresh cost and capability cost. More frequent refreshing costs more, but, 
a more frequent refresh strategy can keep fielded systems more up-to-date thereby reducing the cost of 
capability. For the same openness configuration, frequent refresh may be preferable when the system is 
used in a competitive environment. 

We first compared the life-cycle cost of the original (open) A-RCI and the closed version assuming the 
same A-RCI refresh cycle, i.e., two-year refresh interval. The result in Figure 9 shows that the original A-
RCI is always more beneficial than the closed version (for a 2-year refresh interval). 

 
6 The accumulated cost difference in each year in Figure 7 does not represent the total life-cycle cost difference 
corresponding to an end-of-support year equal to that year. Varying the end-of-support year affects the cost of the 
events during the life cycle, resulting in different cost difference accumulations.  For example, the number of 
components purchased in a lifetime buy is a function of the end-of-support year. 

 
Figure 8 Life-cycle cost difference as a function of end-of-support year (expected consequence per capability 
competition loss is Cq = $1 million, 6-year refresh interval) Year 0 is FY99. 

 

-150

-100

-50

0

50

100

150

200

250

300

350

30 32 34 36 38 40 42 44

Li
fe

-c
yc

le
 C

os
t D

iff
er

en
ce

(C
lo

se
d 

ve
rs

io
n 

-O
rig

in
al

 v
er

si
on

)
M

ill
io

ns

End-of-support year

Closed version is better

Original A-RCI is better

-200

-150

-100

-50

0

50

100

150

0 10 20 30Ac
cu

m
ul

at
ed

 C
os

t D
iff

er
en

ce
(C

lo
se

d 
ve

rs
io

n-
O

rig
in

al
 v

er
si

on
)

M
ill

io
ns

Year



17 

We next varied the refresh strategy of the less open version of A-RCI, but kept the original A-RCI 
configuration with the same original 2-year refresh interval. Three other refresh strategies were considered: 
no refresh, 6-year and 4-year refresh intervals shown in Figure 9. In this case, no-refresh is the optimum 
refresh strategy for the closed version of A-RCI since the curve is below the other cases and below 0 in 
Figure 9. The closed version of A-RCI is more cost effective than the original as the no-refresh curve is 
negative in the end-of-support year range from 30 to 45. 

 
Figure 9 indicates that more frequent refresh increases the life-cycle cost difference between the closed 

version and the original version. As stated previously, refresh cost and capability cost are two cost factors 
that are directly influenced by the frequency of refresh. Frequent refresh results in high refresh cost but 
lower capability cost. Figure 9 shows that for a $1M consequence cost, the increase in refresh cost is more 
significant than the decrease in the capability cost penalty. 
 
3.2.3 Sensitivity analysis 
In addition to the length of life cycle (end of support year) and the refresh strategy, in this section, we further 
analyzed how other external factors could affect the cost of openness. The risk profile and the fleet size are 
selected as two key factors in our case study and a corresponding sensitivity analysis was performed. 

In the context of this case study, risk profile is characterized as the consequence of losing the capability 
competition to adversary systems and the frequency of encountering an adversary system, i.e., the product 
of I and Cq in equation (2). For the A-RCI, the risk profile likely varies based on adversarial conditions. If 
the risk profile is more severe (either a higher probability or a higher consequence), given the same system 
capability, the capability cost is expected to be higher. 

For the sensitivity analysis, the risk profile was varied by changing the expected consequence of losing 
the capability competition when encountering an adversary system. The expected consequence ranged from 
Cq = $1 million to $20 million per capability competition loss. 

 
Figure 9 Life-cycle cost difference given different refresh strategies (Cq = $1M assumed) Year 0 is 
equivalent to FY99. 

 

-$1,000

-$800

-$600

-$400

-$200

$0

$200

$400

$600

$800

$1,000

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Li
fe

-c
yc

le
 C

os
t D

iff
er

en
ce

(C
lo

se
d 

ve
rs

io
n 

-O
rig

in
al

 v
er

si
on

)

M
ill

io
ns

End of Support Year

Closed version is better

Original A-RCI is better

4-year refresh interval

6-year refresh interval

No refresh

2-year refresh interval



18 

 
Figure 10 shows the cost difference between the two configurations (the original A-RCI with its 2-year 

refresh and the closed architecture A-RCI with various refresh intervals) all of which have a 30-year support 
life. Each data point is the mean of one simulation cost difference result. The four curves shown represent 
different refresh strategies that were implemented to the closed configuration. In Figure 10, the data points 
that have a positive cost difference are the results for which the original A-RCI configuration is more cost 
effective, and the negative cost difference points indicate that the less open version of A-RCI is preferred. 

The curve of the 2-year refresh interval is a flat line in Figure 10. Since the two configurations both 
follow the same A-RCI refresh cycle, theoretically, the technology performance would be the same 
throughout the life cycle in both configurations. Therefore, there would be no sensitivity to the capability 
cost. 

Based on Figure 10, we can observe how the risk profile and the refresh strategy jointly affect the result. 
First, the three curves in Figure 10, except the 2-year refresh interval, are all increasing functions, indicating 
that no matter what refresh strategy the closed version A-RCI adopts, the open configuration becomes more 
beneficial as the expected consequence increases. However, since the original A-RCI has the most frequent 
refreshes, the increasing in capability cost of the original A-RCI is less than the increasing in capability cost 
in the closed version of the A-RCI resulting in positive slopes of the three curves. Second, the slopes of the 
three curves decrease as the refresh becomes more frequent. The life-cycle cost of the closed A-RCI with 
no refresh is more sensitive to the risk. Among the three refresh strategies, when the expected consequence 
(Cq) is less than $6 million, no refreshes represents the optimum strategy. 2-year interval refresh becomes 
preferable when the expected consequence is more than $6 million. Lastly, once the expected consequence 
is over $3 million, it is always more cost effective to adopt an open system approach rather closed approach. 
In conclusion, as the expected consequence increases, capability cost becomes dominant. Therefore, in 
order to reduce the capability cost and have a lower cost per refresh, an open configuration with frequent 
refresh is favorable. 

 
Figure 10 Cost difference comparison of 30-year support life given different risk profiles and refresh strategies. 

 

-$1,000

-$500

$0

$500

$1,000

$1,500

$2,000

$2,500

$3,000

$3,500

$0 $5 $10 $15 $20

Li
fe

-c
yc

le
 C

os
t D

iff
er

en
ce

(C
lo

se
d 

ve
rs

io
n 

-O
rig

in
al

 v
er

si
on

)

M
ill

io
ns

Expected Consequence (Cq)
Millions

No refresh

6-year refresh interval

4-year refresh interval

Closed version is better

Original A-RCI is better

2-year refresh interval

Commented [PAS1]: You should change the horizontal 
axis title to:  “Expected Consequence (Cq)” 

Commented [PAS2R1]: Cq should be in times font and 
italics to match the text. 



19 

 
The number of fielded systems is another factor that potentially impacts the results. Recurring costs, 

e.g., production cost and refresh delivery cost, and capability cost are directly influenced by the number of 
fielded systems.  Figure 11 shows two sensitivity analyses of the number of fielded systems under low and 
high-risk profiles separately. In Figure 11, all the systems were supported for 30 years and three scenarios 
were considered: 0.5, 1 and 1.5 times the original A-RCI fleet size. As the fleet size grows, the influence of 
the fleet-size-dependent cost factors have more impact on life-cycle cost. These factors include system 
production cost, system refresh delivery cost and capability cost and the most dominant cost factor 
determines whether an open system is cost effective or not. On the left side of Figure 11, capability cost is 
slightly more dominant in 2-year, 4-year and 6-year refresh interval. The original A-RCI configuration with 
more frequent refresh and less capability cost therefore becomes more cost effective as the fleet size 
increases. For no refresh strategy, refresh delivery cost is more dominant, so the closed version with no 
refresh and less refresh delivery cost becomes more cost effective over the fleet size. On the right side of 
Figure 11, the expected consequence is increased to $10 million, leading to a significant capability cost. 
Thus, the original A-RCI is always better and the effect of capability is magnified as more systems are 
fielded. 

 
3.2.4 A-RCI refresh plan as a mandate 
In Section 2.2, we mentioned that there are cases where the required system capability and performance 
over time is not traded off against life-cycle cost.  In these cases, the refresh schedule is predetermined and 
treated as a constraint in the decision-making process. In these cases, the cost difference between the open 
and closed versions of ignores the capability cost (CCapability) since both versions adopt the same refresh plan. 
We considered these refresh-fixed cases by assigning both open and closed versions the A-RCI a 2-year 
refresh plan. The results for this case are the orange triangle lines in Figure 9 through Figure 11. In all 
situations, the original open A-RCI always has a lower life-cycle cost than the closed version. The results 
can be interpreted as, with the 2-year refresh constraint, the original A-RCI architecture is a more cost 
effective way to sustain the A-RCI systems. 

4 Discussion and conclusions 

The goals of implementing an open system architecture (OSA) are often defined in qualitative terms.  One 
clear benefit is that an OSA can reduce the potential for “vendor lock”, i.e., it can increase the buyers’ power 
over vendors by enabling multi-vendor competition during virtually all phases of a system’s life cycle.  This 
increased competition can also incentivize improved vendor performance and innovation, driving prices 

Figure 11 Cost difference comparison of 30-year support life given different fleet sizes and refresh strategies. 
 

 



20 

lower at the same time (Guertin and Womble, 2012). Often, it is taken for granted that the use of open 
system architecture (OSA) decreases the total life-cycle cost of a system. However, there is a lack of studies 
quantifying the cost avoidance and assessing the circumstances under which this assumption is true. This 
paper presents a framework for the quantitative analysis of OSA by modeling the life-cycle cost difference 
associated with system openness, including open architecture, open standard and commercial off-the-shelf 
(COTS). The cost impact of openness is evaluated by including these concepts of openness into lifetime 
events and corresponding costs.  

A case study of the A-RCI has been used to demonstrate the application of quantitative analysis on cost 
in relation to system openness. The life-cycle cost difference between the original A-RCI and a less open 
version of A-RCI was evaluated. Sensitivity analysis was performed to determine how the important factors, 
including refresh strategy, end-of-support year, risk profile and fleet size, affected the comparison result. 
Given the condition that the expected consequence of capability loss (Cq) is less than $3 million, the closed 
version was found to be more cost effective than the original A-RCI architecture and its 2-year refresh plan, 
when the closed version did not refresh. Given a fixed 2-year refresh plan for both versions, the original A-
RCI architecture is always better. It should be noted that the results presented in this paper are highly 
dependent on the input data that consists of our interpretation of the A-RCI and the A-RCI program, which 
may not be representative of the actual system or program.  It should also be noted that programs like the 
A-RCI are not composed of just hardware and software, but also people whose behavior, experience, and 
training all contribute to the final life-cycle cost of the system. 

Future work will include several elements. More details including shelf life impacts of components 
purchased in lifetime buys and other types of inventory management realities could be included. More 
openness impacts could also be considered in the model. For example, examining the impact of developing 
open-source software. It is believed that open source reduces the development cost since a wider community 
of developers are able to review and test the code. However, when the source code is published openly, 
hackers can easily find and exploit vulnerabilities in the software.7 Thus, the tradeoff is that more money 
would need to be spent on cybersecurity enhancement. Second, further study will focus on developing the 
relationship between system openness and life-cycle cost. For example, a model of life-cycle cost associated 
with COTS Functional Density has been proposed from a software perspective (Abts, 2002). For a complex 
system integrating both hardware and software, a more sophisticated model is needed. Moreover, since 
system openness is not just about the number of COTS, a quantitative metric for system openness should 
also be developed. 

 

Acknowledgements 

Funding for this work is provided by Naval Postgraduate School (Grant Number HQ00341910006).  We 
would also like to thank ASSETT, Inc. and Mr. William Johnson for providing us with valuable insights on 
cost of the A-RCI system.  

References 

ASSETT. (2006) Submarine Sonar Cost Analysis Report. 
Abbott, J.W., Levine, A. and Vasilakos, J. (2008) ‘Modular/open systems to support ship acquisition 

strategies’, Proc. Am. Soc. of Naval Engineers Day, Arlington, VA. 

 
7 Consequently, it is believed that proprietary software is better protected against external attacks.  Experience shows 
that when open-source code is actively reviewed, it has proven to be secure (e.g., the popular operating system Linux) 
(Taylor, 2018).  However, this may not be the case with software that has a limited distribution.  This may also not be 
the case with air-gapped systems like the A-RCI.  Some also argue the vulnerabilities are more quickly detected in 
open systems (Hoepman and Jacobs, 2008). 



21 

Abts, C. M. and Boehm, B. W. (1997). COTS Software Integration Cost Modeling Study. Contract, 
30602(94-C), 1095. 

Abts, C., Boehm, B. W. and Clark, E. B. (2000). ‘COCOTS: A COTS software integration lifecycle cost 
model-model overview and preliminary data collection findings’, Proceedings of the ESCOM-SCOPE 
Conference, pp.18-20. 

Abts, C. (2002) ‘COTS based systems (CBS) functional density - A heuristic for better CBS design,’ 
Proceedings of the First International Conference on COTS-Based Software Systems, Orlando, FL, 
Springer, 2002, pp. 1-9. 

Boeing. (nd). KC-46A Pegasus.  Available at: https://www.boeing.com/defense/kc-46a-pegasus-tanker/ 
Boudreau, M. (2006) Acoustic Rapid COTS Insertion: A Case Study in Spiral Development. Naval 

Postgraduate School Report. 
Chen, S.-P. (2022). ‘Appendix A: Calibration of the A-RCI case study’, Analysis of the Life-Cycle Cost and 

Capability Tradeoffs Associated with the Procurement and Sustainment of Open Systems, Ph.D. 
Dissertation in the Department of Mechanical Engineering, University of Maryland. 

Clark, B. and Clark, B. (2007) ‘Added source of costs in maintaining COTS-intensive systems,’ Cross Talk, 
The J. of Defense Software Engineering, Vol. 20, No. 6, pp.4-8. 

Clough, A. (2003) Commercial-off-the-Shelf (COTS) Hardware and Software for Train Control 
Applications: System Safety Considerations (No. DOT-VNTSC-FRA-02-01). John A. Volpe National 
Transportation Systems Center (US). 

DoD. (2015) DoD Instruction 5000.02, Operation of the Defense Acquisition System. [online] 
https://www.acq.osd.mil/fo/docs/500002p.pdf\ (Accessed 22 December 2020). 

DoDAF. (nd) DM2 Data Groups, https://dodcio.defense.gov/Library/DoD-Architecture-
Framework/dodaf20_capability_mm/#:~:text=A%20capability%2C%20as%20defined%20here,publis
hed%20by%20the%20Joint%20Staff 

Dunn, S., Laroche, J. and Mitchell, P. (2018) ‘Open system architectures for the ADF: opportunities and 
challenges’, Australian Defence Force Journal. No. 204.  

Engel, A. and Browning, T. R. (2008) ‘Designing systems for adaptability by means of architecture 
options’, Systems Engineering, Vol. 11, No. 2, pp. 125-146. 

Eppinger, S. D. and Browning, T. R. (2016) Design Structure Matrix Methods and Applications. Cambridge, 
MA: The MIT Press. 

Firesmith, D. (2015) ‘Open system architectures: when and where to be closed’, Software Engineering 
Institute Blog. https://insights.sei.cmu.edu/sei_blog/2015/10/open-system-architecture-when-and-
where-to-be-closed.html  (Accessed 5 January 2021). 

GAO. (2014) Review of Private Industry and Department of Defense Open Systems Experiences. GAO-14-
617R. 

Guertin, N. H. and Miller, R. W. (1998) ‘A-RCI -- the right way to submarine superiority’, Naval Engineers 
Journal, Vol. 110 No. 2, pp.21-33.  

Guertin, N. H. and Womble, B. (2012) ‘Competition and the DoD Marketplace’, Proceedings of the Ninth 
Annual Acquisition Research Symposium, NPS-AM-12-C9P17R01-076. 

Grant, J., Rankine, R., Brown, K. M., Carter, W. R. and Foreman, J. (2000) Ensuring Successful 
Implementation of Commercial Items in Air Force Systems. SCIENTIFIC ADVISORY BOARD (AIR 
FORCE) WASHINGTON DC. 

Hanratty, J. M., Lightsey, R. H. and Larson, A. G. (2002) Open Systems and the Systems Engineering 
Process, Office of the Undersecretary of Defense, Acquisition and Technology; Open Systems Joint 
Task Force. 

Henderson, P. (2009) The Case for Open Systems Architecture, 14 December 2009. [Online]. Available: 
http://pmh-systems.co.uk/Papers/MOSACaseFor/. 

Hoepman, J- H. and Jacobs, B. (2008) ‘Increased security through open source’, Communications of the 
ACM, Vol. 50 No. 1, pp.79-83. 

Jensen, F. and Petersen, N. E. (1982) Burn-in: An Engineering Approach to the Design and Analysis of 
Burn-In Procedures, New York: Wiley.  

https://www.boeing.com/defense/kc-46a-pegasus-tanker/
https://insights.sei.cmu.edu/author/donald-firesmith
https://insights.sei.cmu.edu/sei_blog/2015/10/open-system-architecture-when-and-where-to-be-closed.html
https://insights.sei.cmu.edu/sei_blog/2015/10/open-system-architecture-when-and-where-to-be-closed.html
http://pmh-systems.co.uk/Papers/MOSACaseFor/


22 

Lewis, P., Hyle, P., Parrington, M., Clark, E., Boehm, B., Abts, C. and Manners, R. (2000) Lessons Learned 
in Developing Commercial Off-The-Shelf (COTS) Intensive Software Systems, Federal Aviation 
Administration Software Eng. Resource Center Report. 

Logan, G. T. (2004) ‘The modular open systems approach (MOSA)’, OSJTF presentation to the Exec. Prog. 
Managers Course: acc.dau.mil/CommunityBrowser.aspx?id=37585. 

Mladenović, D., Jovanović, D. and Denić, N. (2013) ‘Open source solutions in the development of military 
unmanned aerial systems’, Scientific Technical Review, Vol.63 No.1, pp.36-46. 

MOSA. (2012) AFRL/RYM Metrics Working Group, MOSA Metrics Calculator, Unpublished. 
NOAET. (2009) Naval Open Architecture Enterprise Team, Open Architecture Assessment Tool, Version 

3.0, User's Guide. 
OSJTF. (2004) Open Systems Joint Task Force, “Program Manager's Guide: A Modular Open Systems 

Approach (MOSA) to Acquisition, United States Department of Defense, Available online: 
http://www.acq.osd.mil/osjtf/pdf/PMG_04.pdf, September 2004. 

Peruzzi, L. (2019) ‘A new generation of submarine combat management systems’, European Security & 
Defence. https://euro-sd.com/2019/05/articles/13130/a-new-generation-of-submarine-combat-
management-systems/  (Accessed 29 December 2020). 

SAF Public Affairs. (2020). Air Force, Boeing Agree on Final KC-46 RVS 2.0 Design.  April 2, 2020.  
Available at: https://www.afrc.af.mil/News/Article/2135364/air-force-boeing-agree-on-final-kc-46-
rvs-20-design/ 

Sandborn, P. 2017. Cost Analysis of Electronic Systems, 2nd edition, World Scientific. 
Schramm, Z. (2013) A Model for Estimating the Cost Tradeoffs Associated with Open Electronic Systems, 

MS Thesis, Dept. of Mechanical Engineering, University of Maryland. 
Schuster, J. 2007.  Recent Progress in Submarine Sonar … and Future Challenges in ASW, MI Department 

of Mechanical Engineering, Center for Ocean Engineering, Ocean Acoustics Group 7.  Available at: 
http://acoustics.mit.edu/dyerparty/Ira%20Dyer%20talk%20rev%201.pdf 

Taylor, D. 2018.   ‘Why Linux is better than Windows or macOS for security’, Computerworld. Feb 6, 
2018.  Available at: https://www.computerworld.com/article/3252823/why-linux-is-better-than-
windows-or-macos-for-security.html 

UK MoD. (2013) Guidance System of Systems Approach (SOSA) Open Systems Strategy. 
https://www.gov.uk/government/publications/system-of-systems-approach-sosa-open-systems-
strategy  (Accessed 23 December 2020). 

Wright, M., Humphrey, D. and McCluskey, P. (1997) ‘Uprating Electronic Components for Use Outside 
Their Temperature Specification Limits’, IEEE Transactions on Components, Packaging, and 
Manufacturing Technology, Part A, Vol. 20, No. 2, pp.252-256. 

Zellers, E. M. (2016) Design of Flexible Technology Refresh Plans for Military Open Systems 
Architectures, Ph.D. Dissertation in the Department of Aerospace Engineering, Georgia Institute of 
Technology. 
 

 
 
  

https://euro-sd.com/2019/05/articles/13130/a-new-generation-of-submarine-combat-management-systems/
https://euro-sd.com/2019/05/articles/13130/a-new-generation-of-submarine-combat-management-systems/
https://www.afrc.af.mil/News/Article/2135364/air-force-boeing-agree-on-final-kc-46-rvs-20-design/
https://www.afrc.af.mil/News/Article/2135364/air-force-boeing-agree-on-final-kc-46-rvs-20-design/
http://acoustics.mit.edu/dyerparty/Ira%20Dyer%20talk%20rev%201.pdf
https://www.computerworld.com/article/3252823/why-linux-is-better-than-windows-or-macos-for-security.html
https://www.computerworld.com/article/3252823/why-linux-is-better-than-windows-or-macos-for-security.html
https://www.gov.uk/government/publications/system-of-systems-approach-sosa-open-systems-strategy
https://www.gov.uk/government/publications/system-of-systems-approach-sosa-open-systems-strategy


23 

Appendix  

This appendix presents a simple example to demonstrate the life-cycle cost calculation used in this paper.  
For demonstration purposes this example is deterministic, however, in the A-RCI case presented in Section 
3 of the paper, many of the inputs are probability distributions. The example architecture considered is the 
four-component/three-interface system shown in Figure A.1. Components 1 and 3 are COTS. Components 
2 and 4 are proprietary. The interfaces of components 2, 4 and components 1, 3 are open standard and the 
interface of component 1, 2 is proprietary interface. Table A.1 shows the parameters used in this example. 
 
Figure A.1. The example architecture.  The thick line denotes a proprietary interface; the thin line denotes an open 
standard. 

 
Table A.1. Example analysis parameters. 

 Reliability 
(year) 

Support 
Life 
(year) 

Design 
cost 

Procurement 
cost 

Install 
cost 

 Support 
Life (year) 

Design 
cost 

Proprietary W(1.75,8) 5.4 $500 $2 $0.2 Open 
standard 

18 $500 
COTS W(1.75,8) 2.4 $100 $1 $0.1 
System 1 2 3 4 Holding cost $1/year per part 
Production time (year) 0 1 2 3 
Retire time (year) 30 30 30 30 Discount rate 0 

 
Step 1. Establish the refresh schedule8 for the architectural baseline that is based on the obsolescence 

dates of the components and the standard. At the first refresh (t = 4), components 1 and 3 are refreshed 
because they are obsolete. Component 2 is also refreshed since it is connected to component 1 with 
proprietary interface. At the second refresh (t  =8) all components are refreshed since they are all obsolete. 
At the 5th refresh (t = 20), since the open standard is also obsolete, all the components and the open standard 
are refreshed. Once the required components at each design refresh are determined, the corresponding 
refresh development cost is the sum of the design cost of the refreshed components/standard. 
 
Figure A.2. The architectural baseline timeline and the first design and refresh costs. 

 
Step 2. Generate the system-level production and failure events. In Figure A.3, we use component 3 

and system 3 as an example. We first build the baseline version and the system version. The component 3 
baseline version is based on the “Comp3” timeline in Figure A.2. The version increases by one when there 

 
8 At each design refresh, obsolete or upgrade-required components are refreshed. In addition, these components might 
cause other components that are connected to them with proprietary interfaces to be refreshed. 



24 

is a refresh development event occurring. System 3 is first produced at t = 2 and has a refresh interval of 
four years. Thereafter, every four years of system 3 production (t = 6, 10, 14 and so on), the component 3 
on system 3 is upgraded to the version based on the version in the baseline at the same year. In this case, 
there is a system production event at t = 2. The refresh production events are at the times when the system 
component receives a refresh installation (version change). For the failure events, starting at the initial 
production, time-to-failures are sampled and put on the timeline until the next refresh production. This 
process should be done for all components in all systems. 
 
Figure A.3. The component 3 and system timelines. The number in each block (year) represents the version. 

 
Step 3. Make the required component bridge buy9 to support all post-obsolescence events. Once all 

system events are generated in step 2, for the same component, combine and sort all system-level events 
and the obsolescence events based on version and time. As shown in Table A.2, The value of stock at 
component obsolescence, representing the number for the bridge buy, is the same as the number post-
obsolescence events with the same version. At each of the post-obsolescence events, the stock number 
decreases by one as a component is taken out of the inventory. 

Step 4. Evaluate the event cost. At the “Obsolete” event, the cost is the procurement cost of the bridge 
buy. For the events “System Production,” “Refresh Production” and “Failure,” if the component is not 
obsolete yet, the event cost is the component procurement cost plus the installation cost. If these events are 
after the obsolete date, the cost becomes the installation cost plus the inventory cost. The inventory cost is 
the multiplication of the stock number, holding time and the holding base cost. 
 
Table A.2. Partial events of component 3 and the corresponding event costs. 

Time Type Version System Stock Holding 
time 

Inventory 
Cost 

Bridge 
Buy 
Cost 

Procurement + 
Installation cost 

0.00 System Production 1 1 0 0.00 0.00 0 1.1 
1.00 System Production 1 2 0 0.00 0.00 0 1.1 
2.00 System Production 1 3 0 0.00 0.00 0 1.1 
2.40 Obsolete 1 0 3 0.00 0.00 3 0 
3.00 System Production 1 4 3 0.60 1.80 0 0.1 
3.30 Failure 1 2 2 0.30 0.61 0 0.1 
4.80 Failure 1 3 1 2.69 2.69 0 0.1 
4.00 Refresh Production 2 1 0 0.00 0.00 0 1.1 
5.00 Refresh Production 2 2 0 0.00 0.00 0 1.1 
6.00 Refresh Production 2 3 0 0.00 0.00 0 1.1 
6.40 Obsolete 2 0 4 0.00 0.00 4 0 
6.92 Failure 2 2 4 0.52 2.09 0 0.1 
7.00 Refresh Production 2 4 3 0.08 0.24 0 0.1 
8.09 Failure 2 3 2 1.09 2.19 0 0.1 
9.18 Failure 2 3 1 1.08 1.08 0 0.1 

 

 
9 When the component becomes obsolete, a sufficient number of components are purchased and held 

in the inventory to support the fleet until the next refresh. 



25 

Step 6. Repeat Step 1 to Step 4 for sufficient trials (sampling the time-to-failure distributions to generate 
demands) to generate a total life-cycle cost distribution. 

 
 


	Abstract:  System openness refers to the extent to which system components (e.g., hardware and software) can be independently integrated, removed, or replaced without adversely impacting the existing system. Openness is an intuitively understood conce...
	1 Introduction
	1.2 Existing work

	2 Model development
	2.1 Cost model
	2.1.1 Development/adoption costs (CDevelopment)
	2.1.2 Production costs (CProduction)
	2.1.3 Operation and support costs (CO&S)
	2.1.4 Refresh costs (CRefresh)

	2.2 Cost of system technological capability (CCapability)

	3 A-RCI case study
	3.1 A-RCI input data
	3.1.1 Data calibration

	3.2 Modeling results
	3.2.1 Relative life-cycle cost analysis approach
	3.2.2 The effect of refresh strategy
	3.2.3 Sensitivity analysis
	3.2.4 A-RCI refresh plan as a mandate


	4 Discussion and conclusions
	Acknowledgements
	References
	Appendix

